Synthesis and ³¹P N.M.R. Spectroscopy of Platinum and Palladium Complexes containing Side-bonded Diphenyldiphosphene. The X-Ray Crystal and Molecular Structure of [Pd(PhP=PPh){bis(diphenylphosphino)ethane}]

Joseph Chatt,^a Peter B. Hitchcock,^a Alan Pidcock,^a Christopher P. Warrens,^a and Keith R. Dixon^b ^a School of Chemistry and Molecular Sciences, University of Sussex, Falmer, Brighton BN1 9QJ, U.K. ^b Department of Chemistry, University of Victoria, Victoria, British Columbia, Canada V8W 2Y2

The structure of [Pd(PhP=PPh)(dppe)], dppe = bis(diphenylphosphino)ethane, obtained by a new and potentially general synthesis, is essentially planar with only a 3° twist between the two PdP₂ planes and a P-P bond distance of 2.121(4) Å; ³¹P n.m.r. data on the analogous platinum complexes show very small s-character in the Pt-P(diphosphene) bonds, suggesting that the structure is essentially a diphosphene bound to Pt⁰ rather than that of a diphosphido(2 -) ligand bound to Pt¹.

Although preparation of PhP=PPh was first claimed in 1877,¹ the product was actually (PhP)₅,² and the first genuine diphosphene, bis(2,4,6-tri-t-butylphenyl)diphosphene, was reported only last year.³ Here the phosphorus-phosphorus double bond is apparently stabilised by the very bulky substituents. Stabilisation by η^2 co-ordination to a metal is also possible, but the three known examples⁴⁻⁶ all contain relatively unusual substituents on phosphorus and result from reactions unlikely to be of general application.[†] Moreover it is not clear with only P-P bond distance evidence available whether they should be regarded as diphosphene or diphosphio(2-) derivatives.

We have found that Li₂(PhPPPh),⁷ reacts smoothly at 25 °C in tetrahydrofuran solution with *cis*-[MCl₂L₂], to give good yields of air-stable orange or yellow crystals, [M(PhP=PPh)L₂], $\{M = Pt, L_2 = (PPh_3)_2 \text{ or } Ph_2P[CH_2]_2PPh_2 (dppe); M = Pd,$ $L_2 = dppe \}$. The presence of side-bonded (η^2) diphenyldiphosphene in these complexes was confirmed by a single-crystal X-ray structure determination of [Pd(PhP=PPh)(dppe)] (Figure 1).

Crystal data: $C_{38}H_{34}P_4Pd$, M = 721.0, monoclinic, C2/c, a = 11.112(3), b = 18.826(7), c = 16.356(3) Å, $\beta = 99.59^{\circ}$ Z = 4. The structure was solved by heavy atom methods and refined by full-matrix least-squares to R = 0.050 for 1351 reflections with $I > \sigma(I)$ measured on an Enraf-Nonius CAD 4 diffractometer using Mo- K_{α} radiation.[‡] The molecule lies on a crystallographic two-fold axis. The co-ordination about Pd is closely planar with only a 3° twist between the planes Pd-P(1)-P(1') and Pd-P(2)-P(2'). The diphosphene ligand is nearly planar with trans-phenyl substituents and the dihedral angle of 163° for C(1)-P(1)-P(1')-C(1') indicates a bending of the P(1)-C(1) bonds by 8.5° away from the metal. The P(1)-P(1') distance is 2.121(4) Å, similar to the ca. 2.15 Å in previous examples⁴⁻⁶ and significantly longer than in non-co-ordinated bis(2,4,6-tri-t-butylphenyl)diphosphene, 2.034(2) Å.³ The P-P single bond length in (PhP)₅ is 2.217(6) Å.² Similar lengthening of multiple bonds on co-ordination is well known in alkene complexes⁸ and has also been reported very recently for the phospha-alkyne, Bu^tC=P (1.544 Å) in the complex, [Pt(η^2 - $P = CBu^{t}(PPh_{3})_{9} (1.672 \text{ Å}).^{9}$

³¹P {¹H } N.m.r. spectra of the complexes, $[M(Ph_{2}P_{2})L_{2}]$, all consist basically of two triplets due to diphosphene and L_2 , respectively, with additional satellites arising from coupling to ¹⁹⁵Pt when M = Pt. The triplets may be interpreted as 'deceptively simple' examples of AA'XX' spectra§ and two highly unusual features are evident: (i) the apparent triplet couplings, $\frac{1}{2}[{}^{2}J(PP \ trans) + {}^{2}J(PP \ cis)]$, are only ca. 30 Hz indicating that ${}^{2}J(PP \ trans)$ must be much smaller than the 400-600 Hz normally observed in phosphine complexes¹⁰ and (ii) the coupling of diphosphene to ¹⁹⁵Pt is only ca. 280 Hz compared to values of 3000-4000 Hz in P(aryl)₃ complexes.¹⁰ These effects are unprecedented except for the very recent data on $[Pt(\eta^2-P \equiv CBu^t)(PPh_3)_2]$; ${}^{1}J(Pt-P)$ 62, ${}^{2}J(PP \ trans)$ 15, and ²J(PP cis) 24 Hz.⁹ Based on the usual Fermi contact interpretation of ${}^{1}J(Pt-P)$ values, 11 these data suggest a very small phosphorus 3s character for the Pt-P bonds in η^2 complexes. Precise comparisons with ¹³C data for alkene and alkyne complexes are complicated by the variety of co-ligands (especially trans) and oxidation states in the literature exam-

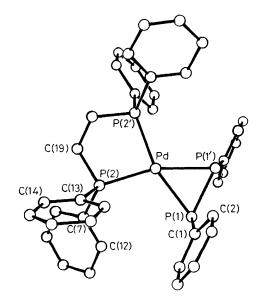
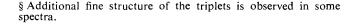



Figure 1. Molecular structure of $[Pd(PhP=PPh) (Ph_2PCH_2CH_2-PPh_2)]$. Some important dimensions are: Pd-P(1) 2.366(2), Pd-P(2) 2.304(2), P(1)-P(1)' 2.121(4), and P(1)-C(1) 1.854(9) Å; C(1)-P(1)-P(1') 101.9(3)°.

 $[\]begin{array}{l} \dagger \ [MoH_2(\eta^5\text{-}C_5H_5)_2] + \frac{1}{2}P_4 \rightarrow [Mo(P_2H_2)(\eta^5\text{-}C_5H_5)_2] \ (\text{ref. 4}); \\ [Pt(PPh_3)_3] + \frac{1}{2}[P_4(C_6F_5)_4] \rightarrow [Pt \ \{P_2(C_6F_5)_2)(PPh_3)_2] \ (\text{ref. 5}); \\ [NiCl_2(PEt_3)_2] + Li[P(SiMe_3)_2] \rightarrow [Ni \ \{P_2(SiMe_3)_2\}(PEt_3)_2] \ (\text{ref. 6}). \end{array}$

[‡] The atomic co-ordinates for this structure are available on request from the Director of the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW. Any request should be accompanied by the full literature citation for this communication.

Table 1. Representative coupling constant data.

Complex	$^{1}J(Pt-C)/Hz$	Complex	$^{1}J(Pt-P)/Hz$
$\begin{array}{l} [PtCl(Me)(AsMe_{3})_{2}]^{a}\\ [PtCl(Me)(cod)]^{a,g}\\ [Pt(C_{2}H_{4})(PPh_{3})_{2}]^{b}\\ [Pt(C_{2}Me_{2})(PPh_{3})_{2}]^{b} \end{array}$	643 (Me <i>trans</i> to Cl) 214 (C=C <i>trans</i> to Cl) 194 (C=C) 52 (C=C)	$ \begin{array}{l} [PtMe(PPh_{3})(dppe)]^{+ c} \\ [Pt \{Ph_{2}P[CH_{2}]_{3}PPh_{2}\}_{2}]^{d} \\ [Pt(PhP=PPh)(dppe)]^{c} \\ [Pt(P=CBu^{t})(PPh_{3})_{2}]^{f} \end{array} $	2777 (PPh ₃) 3644 288 (P=P) 62 (P=C)

^a M. H. Chisholm, H. C. Clark, L. E. Manzer, J. B. Stothers, and J. E. H. Ward, J. Am. Chem. Soc., 1973, **95**, 8574; *ibid.*, 1975, **97**, 721. ^b B. E. Mann, Adv. Organomet. Chem., 1974, **12**, 135, and references therein. ^c T. G. Appleton and M. A. Bennett, Inorg. Chem., 1978, **17**, 738. ^d Ref. 10. ^e Present work. ^t Ref. 9. ^g cod = cyclo-octa-1,5-diene.

ples. However, the ${}^{1}J(Pt-{}^{13}C)$ data in Table 1 do show a similar decrease in s-character on changing from a Pt-C(sp³) bond to an η^{2} complex. The decrease is larger in the phosphorus case, presumably because the lone pairs have very high s-character. Table 1 also shows a close relationship between ${}^{1}J$ -(Pt-C) values in alkene and alkyne complexes and ${}^{1}J(Pt-P)$ in diphosphene and phospha-alkyne complexes.

Overall, both the structural and n.m.r. evidence indicate that η^2 -P₂R₂ complexes are best regarded as alkene analogues, face-bound to the metal with lone pairs occupying the *trans* 'trigonal' positions in the diphosphene.

We thank the S.E.R.C. for a post-doctoral fellowship (C.P.W.) and the University of Sussex for study leave facilities (K.R.D.).

Received, 27th May 1982; Com. 610

References

1 H. Kohler and A. Michaelis, *Ber. Dtsch. Chem. Ges.*, 1877, 10, 807.

- 2 J. J. Daly, J. Chem. Soc., 1964, 6147.
- 3 M. Yoshifujii, I. Shima, N. Inamoto, K. Hirutsu, and T. Higuchi, J. Am. Chem. Soc., 1981, 103, 4587.
- 4 J. C. Green, M. L. H. Green, and G. E. Morris, J. Chem. Soc., Chem. Commun., 1974, 212; E. Camillo, A. Coda, K. Prout, and J. C. Daran, Acta Crystallogr., Sect. B, 1977, 33, 2608.
- 5 P. S. Elmes, M. L. Scudder, and B. O. West, J. Organomet. Chem., 1976, 122, 281.
- 6 B. Deppisch and H. Schäfer, Acta Crystallogr., Sect. B, 1982, 38, 748.
- 7 K. Issleib and K. Krech, Chem. Ber., 1966, 99, 1310.
- 8 S. D. Ittel and J. A. Ibers, Adv. Organomet. Chem., 1976, 14, 33.
- 9 J. C. T. R. Burckett St. Laurent, P. B. Hitchcock, H. W. Kroto, and J. F. Nixon, J. Chem. Soc., Chem. Commun., 1981, 1141.
- 10 P. S. Pregosin and R. W. Kunz, '³¹P and ¹³C N.M.R. of Transition Metal Phosphine Complexes,' Springer-Verlag, New York, 1979, No. 16 in series 'N.M.R. Basic Princeles and Progress.'
- 11 J. F. Nixon and A. Pidcock, Annu. Rev. NMR Spectrosc., 1969, 2, 345.